三门问题(来源:百度百科)

00001 9月前 167

三门问题(Monty Hall problem)亦称为蒙提霍尔问题、蒙特霍问题或蒙提霍尔悖论,大致出自美国的电视游戏节目Let's Make a Deal。问题名字来自该节目的主持人蒙提·霍尔(Monty Hall)。参赛者会看见三扇关闭了的门,其中一扇的后面有一辆汽车,选中后面有车的那扇门可赢得该汽车,另外两扇门后面则各藏有一只山羊。当参赛者选定了一扇门,但未去开启它的时候,节目主持人开启剩下两扇门的其中一扇,露出其中一只山羊。主持人其后会问参赛者要不要换另一扇仍然关上的门。问题是:换另一扇门会否增加参赛者赢得汽车的机率?如果严格按照上述的条件,即主持人清楚地知道,自己打开的那扇门后是羊,那么答案是会。不换门的话,赢得汽车的几率是1/3。换门的话,赢得汽车的几率是2/3。
这个问题亦被叫做蒙提霍尔悖论:虽然该问题的答案在逻辑上并不自相矛盾,但十分违反直觉。这问题曾引起一阵热烈的讨论。

由来

以下是蒙提霍尔问题的一个著名的叙述,来自 Craig F. Whitaker 于1990年寄给《展示杂志》(Parade Magazine)玛丽莲·沃斯·莎凡特(Marilyn vos Savant)专栏的信件:
“假设你正在参加一个游戏节目,你被要求在三扇门中选择一扇:其中一扇后面有一辆车;其余两扇后面则是山羊。你选择了一道门,假设是一号门,然后知道门后面有什么的主持人,开启了另一扇后面有山羊的门,假设是三号门。他然后问你:“你想选择二号门吗?”转换你的选择对你来说是一种优势吗?” [1] 
以上叙述是对Steve Selvin于1975年2月寄给American Statistician杂志的叙述的改编版本。 [2]  如上文所述,蒙提霍尔问题是游戏节目环节的一个引申;蒙提·霍尔在节目中的确会开启一扇错误的门,以增加刺激感,但不会容许参赛者更改他们的选择。如蒙提·霍尔寄给Selvin的信中所写:
“如果你上过我的节目的话,你会觉得游戏很快—选定以后就没有交换的机会。” [3] 
Selvin在随后寄给American Statistician的信件中(1975年8月)首次使用了“蒙提霍尔问题”这个名称。 [4] 
一个实质上完全相同的问题于1959年以“三囚犯问题”(three prisoners problem)的形式出现在马丁·加德纳(Martin Gardner)的《数学游戏》专栏中。加德纳版本的选择过程叙述得十分明确,避免了《展示杂志》版本里隐含的前提条件。
这条问题的首次出现,可能是在1889年约瑟夫·贝特朗所著的 Calcul des probabilités 一书中。 在这本书中,这条问题被称为“贝特朗箱子悖论”(Bertrand's Box Paradox)。

假设

Mueser 和 Granberg 透过厘清细节,以及对主持人的行为加上明确的介定,提出了对这个问题的一种不含糊的陈述 [5]  ︰
  • 现在有三扇门,只有一扇门有汽车,其余两扇门的都是山羊。
  • 汽车事前是等可能地被放置于三扇门的其中一扇后面。
  • 参赛者在三扇门中挑选一扇。他在挑选前并不知道任意一扇门后面是什麽。
  • 主持人知道每扇门后面有什么。
  • 如果参赛者挑了一扇有山羊的门,主持人必须挑另一扇有山羊的门。
  • 如果参赛者挑了一扇有汽车的门,主持人等可能地在另外两扇有山羊的门中挑一扇门。
  • 参赛者会被问是否保持他的原来选择,还是转而选择剩下的那一扇门。
转换选择可以增加参赛者拿到汽车的机会吗?

解法一

问题的答案是可以:当参赛者转向另一扇门而不是维持原先的选择时,赢得汽车的机会将会加倍。
有三种可能的情况,全部都有相等的可能性(1/3):
参赛者挑山羊一号,主持人挑山羊二号。转换将赢得汽车。
参赛者挑山羊二号,主持人挑山羊一号。转换将赢得汽车。
“参赛者挑汽车,主持人挑羊一号。转换将失败”,和“参赛者挑汽车,主持人挑羊二号。转换将失败。”此情况的可能性为:
 。

解法二

另一种解答是假设你永远都会转换选择,这时赢的唯一可能性就是选一扇没有车的门,因为主持人其后必定会开启另外一扇有山羊的门,消除了转换选择后选到另外一只羊的可能性。因为门的总数是三扇,有山羊的门的总数是两扇,所以转换选择而赢得汽车的概率是2/3,与初次选择时选中有山羊的门的概率一样。

补充说明

第一次选的空门(概率66.6%),之后主持人开另一个空门,换门,得到汽车。
第一次选的汽车(概率33.3%),之后主持人开另一个空门,不换门,得到汽车。
这里影响到结果的概率问题只发生在第一次选门上,如果条件如上设置,当一开始的门选定后,事件的结果也就决定了,所以这里不存在之后主持人是选择1号空门,还是2号空门的问题,所以在做概率计算是不考虑主持人的选择。如果也要考虑主持人的话:
第一次选的空门1(概率1/3),之后主持人开另一个空门,换门,得到汽车。事件总概率1/3。
第一次选的空门2(概率1/3),之后主持人开另一个空门,换门,得到汽车。事件总概率1/3。
第一次选的汽车(概率1/3),之后主持人开另一个空门1(概率1/2),不换门,得到汽车 这个事件总概率
第一次选的汽车(概率1/3),之后主持人开另一个空门2(概率1/2),不换门,得到汽车 这个事件总概率
主持人选1号空门还是2号空门打开,这里有个主持人的选择概率,我假设的是主持人随机选择(抽签或者随意),所以各给了50%的概率,如果主持人就是喜欢1号空门,必开1号,那么也就成了1号(100%),2号(0%)了,最后结果并不影响。
所以开始选中汽车,最后换门不得奖的概率是33.3%,开始选中空门,换门最后得奖的概率是66.6%。
最新回复 (0)
返回